Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.439
Filtrar
1.
PLoS One ; 19(4): e0301927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635748

RESUMEN

Generally, UHS-ECC should consume massive cement, which is negative to its sustainability as cement production leads to 8% of global CO2 emissions. To decrease the cost of production and carbon emissions of UHS-ECC, rice husk ash was employed to replace the cement as a supplementary cementitious material in this study. Experiment results illustrate that blending rice husk ash (RHA) would decrease the fluidity of mortar. Furthermore, the green UHS-ECC shows a maximum compressive strength of 130.3 MPa at 28 days when RHA content was 20% of cement. The ultimate tensile strength of UHS-ECCs first increased and then decreased, while both tensile strain and strain energy presented an opposite tendency. At the micro-scale, if RHA content was lower than 20% of cement, incorporating RHA can significantly decreasing fiber bridging complementary energy of UHS-ECC, thus reducing pseudo strain hardening energy (PSHenergy) index, which finely agrees with the degradation of ductility of UHS-ECCs. To guarantee the features of ultra-high strength, acceptable workability, and high tensile ductility, the RHA dosage should not be in excess 20% of cement. These researched results are prospected to the contribution of pozzolanic RHA on the efficient usage of sustainable UHS-ECC.


Asunto(s)
Oryza , Cementos para Huesos , Carbono , Fuerza Compresiva , Cementos de Ionómero Vítreo
2.
PLoS One ; 19(4): e0301075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564619

RESUMEN

In the field of soil mechanics, especially in transportation and environmental geotechnics, the use of machine learning (ML) techniques has emerged as a powerful tool for predicting and understanding the compressive strength behavior of soils especially graded ones. This is to overcome the sophisticated equipment, laboratory space and cost needs utilized in multiple experiments on the treatment of soils for environmental geotechnics systems. This present study explores the application of machine learning (ML) techniques, namely Genetic Programming (GP), Artificial Neural Networks (ANN), Evolutionary Polynomial Regression (EPR), and the Response Surface Methodology in predicting the unconfined compressive strength (UCS) of soil-lime mixtures. This was for purposes of subgrade and landfill liner design and construction. By utilizing input variables such as Gravel, Sand, Silt, Clay, and Lime contents (G, S, M, C, L), the models forecasted the strength values after 7 and 28 days of curing. The accuracy of the developed models was compared, revealing that both ANN and EPR achieved a similar level of accuracy for UCS after 7 days, while the GP model performed slightly lower. The complexity of the formula required for predicting UCS after 28 days resulted in decreased accuracy. The ANN and EPR models achieved accuracies of 85% and 82%, with R2 of 0.947 and 0.923, and average error of 0.15 and 0.18, respectively, while the GP model exhibited a lower accuracy of 66.0%. Conversely, the RSM produced models for the UCS with predicted R2 of more than 98% and 99%, for the 7- and 28- day curing regimes, respectively. The RSM also produced adequate precision in modelling UCS of more than 14% against the standard 7%. All input factors were found to have almost equal importance, except for the lime content (L), which had an average influence. This shows the importance of soil gradation in the design and construction of subgrade and landfill liners. This research further demonstrates the potential of ML techniques for predicting the strength of lime reconstituted G-S-M-C graded soils and provides valuable insights for engineering applications in exact and sustainable subgrade and liner designs, construction and performance monitoring and rehabilitation of the constructed civil engineering infrastructure.


Asunto(s)
Compuestos de Calcio , Suelo , Suelo/química , Fuerza Compresiva , Compuestos de Calcio/química , Óxidos/química
3.
BMC Oral Health ; 24(1): 487, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658909

RESUMEN

BACKGROUND: Zinc-oxide eugenol (ZOE) cements are among the most used temporary materials in dentistry. Although ZOE has advantages over other temporary fillers, its mechanical strength is weaker, so researchers are working to improve it. E-glass fibers have emerged as promising reinforcing fibers in recent years due to their strong mechanical behavior, adequate bonding, and acceptable aesthetics. OBJECTIVES: To evaluate and compare the compressive strength, surface microhardness, and solubility of the ZOE and those reinforced with 10 wt.% E-glass fibers. METHODS: A total of 60 ZEO specimens were prepared; 30 specimens were reinforced with 10 wt.% E-glass fibers, considered modified ZOE. The characterization of the E-glass fibers was performed by XRF, SEM, and PSD. The compressive strength, surface microhardness, and solubility were evaluated. Independent sample t-tests were used to statistically assess the data and compare mean values (P ≤ 0.05). RESULTS: The results revealed that the modified ZOE showed a significantly higher mean value of compressive strength and surface microhardness while having a significantly lower mean value of solubility compared to unmodified ZOE (P ≤ 0.05). CONCLUSION: The modified ZOE with 10 wt.% E-glass fibers had the opportunity to be used as permanent filling materials.


Asunto(s)
Fuerza Compresiva , Vidrio , Dureza , Ensayo de Materiales , Solubilidad , Cemento de Óxido de Zinc-Eugenol , Cemento de Óxido de Zinc-Eugenol/química , Vidrio/química , Propiedades de Superficie , Microscopía Electrónica de Rastreo
4.
Sci Rep ; 14(1): 8414, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600143

RESUMEN

In this research paper, the intelligent learning abilities of the gray wolf optimization (GWO), multi-verse optimization (MVO), moth fly optimization, particle swarm optimization (PSO), and whale optimization algorithm (WOA) metaheuristic techniques and the response surface methodology (RSM) has been studied in the prediction of the mechanical properties of self-healing concrete. Bio-concrete technology stimulated by the concentration of bacteria has been utilized as a sustainable structural concrete for the future of the built environment. This is due to the recovery tendency of the concrete structures after noticeable structural failures. However, it requires a somewhat expensive exercise and technology to create the medium for the growth of the bacteria needed for this self-healing ability. The method of data gathering, analysis and intelligent prediction has been adopted to propose parametric relationships between the bacteria usage and the concrete performance in terms of strength and durability. This makes is cheaper to design self-healing concrete structures based on the optimized mathematical relationships and models proposed from this exercise. The performance of the models was tested by using the coefficient of determination (R2), root mean squared errors, mean absolute errors, mean squared errors, variance accounted for and the coefficient of error. At the end of the prediction protocol and model performance evaluation, it was found that the classified metaheuristic techniques outclassed the RSM due their ability to mimic human and animal genetics of mutation. Furthermore, it can be finally remarked that the GWO outclassed the other methods in predicting the concrete slump (Sl) with R2 of 0.998 and 0.989 for the train and test, respectively, the PSO outclassed the rest in predicting the flexural strength with R2 of 0.989 and 0.937 for train and test, respectively and the MVO outclassed the others in predicting the compressive strength with R2 of 0.998 and 0.958 for train and test, respectively.


Asunto(s)
Algoritmos , Prunella , Animales , Humanos , Bacterias , Entorno Construido , Cetáceos , Fuerza Compresiva
5.
PLoS One ; 19(3): e0297364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38442109

RESUMEN

The compressive strength (CS) of the hollow concrete masonry prism is known as an important parameter for designing masonry structures. In general, the CS is determined using laboratory tests, however, laboratory tests are time-consuming and high-cost. Thus, it is necessary to evaluate and estimate the CS using different methods, for example, machine learning techniques. This study employed Gradient Boosting (GB) to evaluate and predict the CS of hollow masonry prism. The database consists of 102 hollow concrete specimens taken from different previous published literature used for modeling. The output is the CS of the hollow masonry prism, while the inputs include the compressive strength of mortar (fm), the compressive strength of blocks (fb), height-to-thickness ratio (h/t), the ratio of fm/fb. To reduce the overfitting problem, this study used K-Fold cross-validation, then particle swarm optimization (PSO) was employed to obtain the optimum hyperparameter. The GB model then was modeled using the optimum hyperparameters. The results showed that the GB model performed very well in evaluating and predicting the CS of the hollow masonry prims with a high prediction accuracy, the values of R2, RMSE, MAE, and MAPE are 0.977, 0.803 MPa, 0.612 MPa, and 0.036%, respectively. The performance of the GB model in this study outperformed in comparison to six different machine learning models (decision tree, linear regression, random forest regression, ridge regression, Artificial Neural network, and Extreme Gradient Boosting) used in previous studies. The results of sensitivity analysis using SHAP and PDP-2D indicate that the CS is strongly dependent on the fb (with a mean SHAP value of 3.2), h/t (with a mean SHAP value of 1.63), while the fm/fb (with a mean SHAP value of 0.57) had a small effect on the CS. Thus, it can be stated that this research provides a good method to evaluate and predict the CS of the hollow masonry prism, which can bring good knowledge for practical application in this field.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Fuerza Compresiva , Bases de Datos Factuales , Conocimiento
6.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456309

RESUMEN

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Asunto(s)
Sustitutos de Huesos , Quitosano , Apatitas/farmacología , Apatitas/química , Sustitutos de Huesos/química , Cementos para Huesos/farmacología , Cementos para Huesos/química , Fosfatos de Calcio/química , Durapatita , Quitosano/farmacología , Quitosano/química , Difracción de Rayos X , Fuerza Compresiva
7.
Acta Biomater ; 179: 164-179, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513725

RESUMEN

Failure-resistant designs are particularly crucial for bones subjected to rapid loading, as is the case for the ambush-hunting northern pike (Esox lucius). These fish have slim and low-density osteocyte-lacking bones. As part of the swallowing mechanism, the cleithrum bone opens and closes the jaw. The cleithrum needs sufficient strength and damage tolerance, to withstand years of repetitive rapid gape-and-suck cycles of feeding. The thin wing-shaped bone comprises anisotropic layers of mineralized collagen fibers that exhibit periodic variations in mineral density on the mm and micrometer length scales. Wavy collagen fibrils interconnect these layers yielding a highly anisotropic structure. Hydrated cleithra exhibit Young's moduli spanning 3-9 GPa where the yield stress of ∼40 MPa increases markedly to exceed ∼180 MPa upon drying. This 5x observation of increased strength corresponds to a change to brittle fracture patterns. It matches the emergence of compressive residual strains of ∼0.15% within the mineral crystals due to forces from shrinking collagen layers. Compressive stresses on the nanoscale, combined with the layered anisotropic microstructure on the mm length scale, jointly confer structural stability in the slender and lightweight bones. By employing a range of X-ray, electron and optical imaging and mechanical characterization techniques, we reveal the structure and properties that make the cleithra impressively damage resistant composites. STATEMENT OF SIGNIFICANCE: By combining structural and mechanical characterization techniques spanning the mm to the sub-nanometer length scales, this work provides insights into the structural organization and properties of a resilient bone found in pike fish. Our observations show how the anosteocytic bone within the pectoral gridle of these fish, lacking any biological (remodeling) repair mechanisms, is adapted to sustain natural repeated loading cycles of abrupt jaw-gaping and swallowing. We find residual strains within the mineral apatite nanocrystals that contribute to forming a remarkably resilient composite material. Such information gleaned from bony structures that are different from the usual bones of mammals showcases how nature incorporates smart features that induce damage tolerance in bone material, an adaptation acquired through natural evolutionary processes.


Asunto(s)
Esocidae , Animales , Esocidae/fisiología , Huesos/fisiología , Estrés Mecánico , Nanopartículas/química , Fuerza Compresiva , Evolución Biológica , Módulo de Elasticidad , Colágeno/química
8.
Environ Sci Pollut Res Int ; 31(17): 24868-24880, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460037

RESUMEN

Microbially induced calcite precipitation (MICP) is an eco-friendly bio-remediation technology. The unconfined compressive strength (UCS) of MICP cemented soil is an important indicator of repair effectiveness. This study proposes a machine learning technique utilizing the Sine Cosine Algorithm (SCA) to optimize the regularization coefficient C and kernel width γ of the kernel extreme learning machine (KELM) to predict the UCS of MICP cemented soil. To evaluate the performance of the proposed models, a dataset containing 180 groups of the UCS of MICP cemented soil was obtained. The results obtained by SCA-KELM were compared with those obtained by the Random Forest algorithm (RF), Support Vector Machine (SVM), and KELM. The performance of these models was evaluated by the scores of MAE, RMSE, and R2. The results indicate that the SCA-KELM algorithm exhibits optimal prediction performance (Total score: 21). After optimizing KELM with SCA, the total score improved by 110%, suggesting that SCA significantly enhances the KELM performance. After model development, the optimal population size for SCA-KELM was determined to be 50. Based on the mutual information test, an innovative method was developed for categorizing factor sensitivity by employing importance scores as the partitioning criterion. This method categorizes the influencing factors into three tiers: high (importance score: 8.03-11.14%), medium (importance score: 5.93-7.25%), and low (importance score: 3.23-5.18%). These results suggest that the proposed SCA-KELM algorithm can be regarded as a powerful tool for predicting the UCS of MICP cemented soil.


Asunto(s)
Carbonato de Calcio , Suelo , Fuerza Compresiva , Algoritmos , Aprendizaje Automático
9.
Environ Sci Pollut Res Int ; 31(17): 25129-25146, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468004

RESUMEN

Every structure might be exposed to fire at some point in its lifecycle. The ability of geopolymer composites to withstand the effects of fire damage early before it is put out is of great importance. This study examined the effects of fire on geopolymer composite samples made with high-calcium fly ash and alkaline solution synthesised from waste banana peduncle and silica fume. A ratio of 0.30, 0.35, and 0.4 was used in the study for the alkaline solution to fly ash. Also used were ratios of 0.5, 0.75, and 1 for silica oxide (silica fume) to potassium hydroxide ratio. The strength loss, residual compressive strength, percentage strength loss, relative residual compressive strength, ultrasonic pulse velocity, and microstructural properties of the thirteen mortar mixes were measured after exposure to temperatures of 200, 400, 600, and 800 °C for 1 h, respectively. The results reveal that geopolymer samples exposed to elevated temperatures showed great dimensional stability with no visible surface cracks. There was a colour transition from dark grey to whitish brown for the green geopolymer mortar and brown to whitish brown for the control sample. As the temperature rose, weight loss became more pronounced, with 800 °C producing the most significant weight reduction. The optimum mixes had a residual compressive strength of 25.02 MPa after being exposed to 200 °C, 18.72 MPa after being exposed to 400 °C, 14.04 MPa after being exposed to 600 °C, and 7.41 MPa after being exposed to 800 °C. The control had a residual compressive strength of 8.45 MPa after being exposed to 200 °C, 6.67 MPa after being exposed to 400 °C, 3.16 MPa after being exposed to 600 °C, and 2.23 MPa after being exposed to 800 °C. The relative residual compressive strength decreases for green geopolymer mortar are most significant at 600 and 800 °C, with an average decrease of 0.47 and 0.30, respectively. The microstructure of the samples revealed various phase changes and new product formations as the temperature increased.


Asunto(s)
Ceniza del Carbón , Polvo , Humanos , Temperatura , Análisis por Conglomerados , Fuerza Compresiva , Fiebre , Gases , Dióxido de Silicio
10.
Environ Sci Pollut Res Int ; 31(17): 25991-26005, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492138

RESUMEN

The use of geopolymers (GP) in cementitious composites provides a solution to reduce the significant carbon emissions associated with conventional cement production, thereby advancing environmentally friendly concrete construction practices. The promise of hybrid fiber-reinforced fly ash (FA)-based GP (HFGP) composites that combine microfibers and nanoparticles has not yet been fully comprehended. This research aims to enhance the mechanical and microstructural properties of HFGP blends by varying the proportion of nano calcium carbonate ( n - C a C O 3 ). The production of HFGP involved the use of two types of fibers: 1% carbon fibers and 0.5% basalt fibers. To achieve HFGP blends with a consistent fiber ratio, we incorporated four different levels of n - C a C O 3 , comprising 1%, 2%, 3%, and 4% of the mixture. The analysis of fractured samples encompassed microstructural and mineralogical characterization, which was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The results unveiled that the HFGP blend containing 3% n - C a C O 3 exhibited the highest levels of hardness, compressive strength, toughness modulus, and flexural strength while the use of 2% n - C a C O 3 produced the highest results for fracture toughness and impact strength. SEM analysis illustrated that n - C a C O 3 had a significant positive impact on the microstructure of GP. A considerable rise in hump intensity between 20 and 40 °C ( 2 θ ) was also seen in the XRD examination, indicating that calcium silicate hydrate (CSH) had formed after the primary binder, such as sodium aluminosilicate hydrate (NASH), had been present. The stretching of O-H bonds in water molecules was also seen in the HFGP spectra at 3399, 3436, 3436, and 3438 cm-1. Due to the higher water content in the HFGP network, which may influence the material's strength, these bands were more apparent and larger in specimens with additions of nanoparticles and hybrid fibers.


Asunto(s)
Nanocompuestos , Ensayo de Materiales , Dureza , Fuerza Compresiva , Nanocompuestos/química , Agua
11.
J Environ Manage ; 356: 120605, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498962

RESUMEN

The photocatalytic cementitious materials (PCM) are expected to alleviate air pollution due to the direct utilization of natural solar energy. However, the color properties of cementitious materials have significant effect on the photocatalytic performance of PCM. In the present study, the colorful PCM is prepared using various colorants. The effect of color properties of cementitious materials on the NOx removal capacity of PCM is researched, and the related mechanism is analyzed by optical analysis. Furthermore, the effect of colorants on the compressive strength of PCM is studied. Results showed that the NOx removal capacity of PCM is decreased by the presence of colorants. As the 5% of black, yellow, red, and blue colorants are used, the NOx removal capacity of PCM is reduced by 73%, 48%, 21%, and 19%, respectively. Both the nano-TiO2 and cement in the PCM can absorb UV light. Colorants could enhance the UV light absorption capacity of cement, leading to a decrease in the UV light absorption of nano-TiO2, which is harmful to the generation of electron-hole pairs. Moreover, the Fe-phase in colorants could improve the surface charge separation resistance of nano-TiO2, limiting the efficiently separated electron-hole pairs. Therefore, the photocatalytic performance of PCM is weakened by the presence of colorants. The compressive strength of PCM is decreased by using colorants, but the reduction ratio at 28 d is no more than 10%, with the content of colorants within 5%. This research can guide the color design of PCM in practical applications.


Asunto(s)
Contaminación del Aire , Rayos Ultravioleta , Fuerza Compresiva
12.
J Environ Manage ; 356: 120594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503229

RESUMEN

Almost all iron ore tailings (IOTs) required activation prior to use as SCMs, which limited their application in building materials. This study investigated HMPT-IOTs and discovered that they possess latent hydraulic and pozzolanic properties. In order to better utilize as SCM, mechanical properties, hydration reactions, hydration products, microstructure, and pores were comprehensively studied through mechanical tests, hydration heat tests, XRD, SEM, TG, and MIP. The results show that when HMPT-IOTs replace cement at 10 wt%, 20 wt% and 30 wt%, the compressive strength at 28 days is 41.9 MPa, 47.9 MPa and 37.5 MPa, respectively. When the substitution amount reaches 30 wt%, it will reduce the cumulative heat of hydration and promote early hydration reactions. The main hydration products are ettringite and Ca(OH)2. As the nucleation site of C-S-H, hydration products are interconnected, making the microstructure denser. At this substitution level, Ca(OH)2 consumption was about 2% at 28 days of age. Simultaneously, the total pore volume was only 0.01 mL/g greater than that of the control group, and the number of micropores and transition pores decreased by approximately 3%.


Asunto(s)
Materiales de Construcción , Hidrógeno , Fuerza Compresiva , Minerales , Hierro
13.
Environ Sci Pollut Res Int ; 31(16): 23435-23461, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462563

RESUMEN

This review critically evaluates the potential of Waste Foundry Sand (WFS) as a substitute for fine aggregate in concrete, conducting a comparative analysis of its physical and chemical properties against those of natural sand. The study synthesizes findings from various research experiments to determine concrete's most effective WFS replacement percentage. It compiles and analyzes data on how different WFS ratios affect concrete's mechanical properties, including modulus of elasticity and compressive strength. The review also consolidates research on the impact of WFS on concrete's workability, density, and flowability. A key finding is that WFS, categorized as a non-hazardous waste, possesses a diverse particle size distribution, rendering it suitable for recycling in various industrial applications.The study identifies that a 20%-30% replacement of WFS in concrete significantly improves properties such as voids, specific gravity, and density. However, it is essential to note that exceeding a 30% WFS replacement can result in increased carbonation depth and decreased resistance, primarily due to sulfur trioxide (SO3). Further observations indicate that incorporating higher levels of WFS in self-compacting concrete reduces its flowability and increases water permeability. Moreover, the review highlights the regulatory and classification challenges associated with using WFS, particularly its classification as waste, which hampers its widespread adoption in construction. In conclusion, the study recommends implementing End-of-Waste (EoW) regulations to facilitate sustainable recycling and environmental protection. Additionally, it includes a bibliometric analysis of foundry sand research spanning from 1971 to 2020, providing a comprehensive summary of the field's historical and recent developments.


Asunto(s)
Residuos Industriales , Arena , Residuos Industriales/análisis , Dióxido de Silicio , Reciclaje , Fuerza Compresiva
14.
PLoS One ; 19(3): e0300931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512874

RESUMEN

A uniaxial compression test was conducted on sandstone specimens at various inclination angles to determine the energy evolution characteristics during deformation and damage. Based on the principle of minimum energy dissipation, an intrinsic model incorporating the damage threshold was developed to investigate the mechanical properties of sandstone at different inclination angles, and the energy damage evolution during deformation and damage. This study indicated that when the inclination angle of the structural surface remained below 40°, sandstone exhibited varying mechanical properties based on different inclination angles. The peak strain was positively correlated with the inclination angle, whereas the compressive strength and modulus of elasticity showed negative correlations. From an energy perspective, the deformation and damage of sandstone under external loading entail processes of energy input, accumulation, and dissipation. Moreover, higher inclination angles of the structural surface resulted in a smaller absorbed peak strain and a reduced proportion of dissipated energy relative to the energy input, thereby affecting the evolution of energy damage throughout the process. As the inclination angle of the structural surface increased, the absorbed total strain at the peak value decreased, whereas the proportion of the dissipated energy increased. Additionally, the damage threshold and critical value of the rock specimens increased with the inclination angle. The critical value, a composite index comprising the peak strain, compressive strength, and elastic modulus, also increased accordingly. These findings can offer a novel perspective for analyzing geological disasters triggered by fissure zones within underground rock formations.


Asunto(s)
Desastres , Salicilatos , Fuerza Compresiva , Módulo de Elasticidad , Elasticidad
15.
Sci Rep ; 14(1): 6313, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491047

RESUMEN

The design cement mix of grade 350 was created in accordance with Egyptian Standards by partially substituting the fine aggregate with WPVC waste in various weight percentages (10, 20, 30, 40, 50, 75, and 100%). A control mix with 0% replacement was also prepared. The W/C ratio was about 0.5 for all mixes. Compressive, flexure strength, bulk density, and absorption tests were studied. For WPVC replacement, until 30%, compressive strength and flexure strength are acceptable with respect to standerds. Thermal treatment at 200 °C improves the compressive strength, flexure strength and water absorption for 20% WPVC only. The dielectric properties of all cement paste mixes before and after heat treatment, over a frequency range (0.1-106 Hz), were measured as a function of frequency. For dielectric properties and conductivity, an improvement was obtained until 30% WPVC. After this percentage, the dielectric properties and the conductivity got worse. So, cement paste with 30% WPVC as replacement of sand is the optimum ratio with conductivity in range of 10-12 S/cm, which is a good choice for antistatic cement paste applications (10-10-10-12 S/cm). The antimicrobial efficacy of the prepared cement samples of WPVC concentrations (0, 20 and 30) % were studied, the number of grown microbial colonies decreased for all the samples compared to control tap water and decreased by introducing WPVC into the cement paste sample. So, it is recommended to use these samples in places that should be carefully shielded from bacterial infections and static electric charge dangers.


Asunto(s)
Cementos para Huesos , Materiales de Construcción , Fuerza Compresiva , Resistencia Flexional , Agua
16.
PLoS One ; 19(3): e0297154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446783

RESUMEN

This study introduces a novel concrete-filled tube (CFT) column system featuring a steel tube comprised of four internal triangular units. The incorporation of these internal triangular units serves to reduce the width-thickness ratio of the steel tube and augment the effective confinement area of the infilled concrete. This design enhancement is anticipated to result in improved structural strength and ductility, contributing to enhanced overall performance and sustainability. To assess the effectiveness of the newly proposed column system, a full-scale test was conducted on five square steel tube column specimens subjected to axial compression. Among these specimens, two adhered to the conventional steel tube column design, while the remaining three featured the new CFT columns with internal triangular units. The shape of the CFT column, the presence of infilled concrete and the presence of openings on the ITUs were considered as test parameters. The test results reveal that the ductility of the newly proposed CFT column system exhibited a minimum 30% improvement compared to the conventional CFT column. In addition, the initial stiffness and axial compressive strength of the new system were found to be comparable to those of the conventional CFT column.


Asunto(s)
Compresión de Datos , Fuerza Compresiva , Fenómenos Físicos , Acero , Resistencia a la Tracción
17.
J Mech Behav Biomed Mater ; 152: 106415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301521

RESUMEN

Biodegradable scaffolds are important to regenerative medicine in that they provide an amicable environment for tissue regrowth. However, establishing structure-property (SP) relationships for scaffold design is challenging due to the complexity of the three-dimensional porous scaffold geometry. The complexity requires high-dimensional geometric descriptors. The training of such a SP surrogate model will need a large amount of experimental or simulation data. In this work, a schema of constructing SP relationship surrogates is developed to predict the degraded mechanical properties from the initial scaffold geometry. A new structure descriptor, the extended surfacelet transform (EST), is proposed to capture important details of pores associated with the degradation of scaffolds. The efficiency is further enhanced with principal component analysis to reduce the high-dimensional EST data into a low-dimensional representation. The schema also includes a kinetic Monte Carlo biodegradation model to simulate the biodegradation of polymer scaffolds and to generate the training data for the formation of SP relationships. The schema is demonstrated with the design of polycaprolactone biodegradable scaffolds by connecting the initial scaffold geometry to the degraded compressive modulus.


Asunto(s)
Polímeros , Polímeros/química , Porosidad , Fuerza Compresiva
18.
J Mech Behav Biomed Mater ; 152: 106442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330876

RESUMEN

Antlers are bony structures composed predominantly of primary osteons with unique mechanical properties due to their specific use by deer as weapon and shield. Antler bone fracture resistance has attracted prior scrutiny through experimental tests and theoretical models. To characterize antler mechanical properties, compression of cubes, or bending or tensioning of rectangular bars have been performed in the literature with variations in the protocols precluding comparisons of the data. Compression testing is a widely used experimental technique for determining the mechanical properties of specimens excised from cortical or cancellous regions of bone. However, the recommended geometry for compression tests is the cylinder, being more representative of the real performances of the material. The purpose of research was to report data for compressive strength and stiffness of antler cortical bone following current guidelines. Cylinders (n = 296) of dry antler cortical bone from either the main beam or the tines of Cervus elaphus, Rangifer tarandus, Cervus nippon and Damadama were tested. This study highlights the fact that compression of antler cortical bone cylinders following current guidelines is feasible but not applicable in all species. Standardization of the testing protocols could help to compare data from the literature. This study also confirms that sample localization has no effect on the mechanical properties, that sample density has a significant impact and allows enriching the knowledge of the mechanical properties of dry antler cortical bone.


Asunto(s)
Cuernos de Venado , Ciervos , Animales , Hueso Cortical , Fuerza Compresiva , Fenómenos Físicos
19.
J Biomed Mater Res B Appl Biomater ; 112(3): e35392, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38385983

RESUMEN

The piezoelectric properties of natural bone and their influence on bone growth have inspired researchers to study a range of bio-piezoelectric composite materials. By exploring these materials, researchers aim to understand better, how piezoelectricity can be controlled to promote bone growth and tissue regeneration. In this work, the prominent piezoelectric material, (Ba, Zr) TiO3 -x(Ba,Ca)TiO3 , abbreviated as BCZT, was selected as a possible bone growth enhancer in hydroxyapatite (HA) scaffolds. Initially, BCZT and hydroxyapatite (HA) powders were synthesized using the sol-gel method. Subsequently, various composite samples of BCZT-xHA were prepared using the conventional solid-state method. After sintering the samples at 1300°C, the phase structure, microstructure, density, and electrical properties were characterized. The samples' compressive strength was determined by analyzing the outcomes of basic compression tests. The biological behavior of the samples in terms of in vitro simulated body fluid immersion and MTT tests were evaluated. Our results revealed that among the BCZT-xHA samples, the BCZT-20HA sample had the best composition, considering its electrical, mechanical, and biological properties. A d33 value of 10 pC/N, dielectric permittivity of 110, and the g33 equal to 10.27 mV m/N resulted in the output voltage of 1.03 V. The results of the MTT assay test confirmed the noncytotoxic nature of the samples with the highest optical density in the BCZT-20HA sample.


Asunto(s)
Líquidos Corporales , Fuerza Compresiva , Durapatita/farmacología
20.
PLoS One ; 19(1): e0297372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265991

RESUMEN

Expanded polystyrene (EPS) bead lightweight soil composites are a new type of artificial geotechnical material with low density and high strength characteristics that can be widely used in engineering projects. To promote the wide application of EPS bead lightweight soil in engineering, when slag is used to replace part of the cement as a binding agent, it can better improve the effect of soil and reduce engineering costs. The mechanical properties of EPS lightweight soil mixed with slag were analyzed by conducting an unconfined compressive strength (UCS) test and triaxial test on lightweight soil with different EPS bead contents and slag contents. The particle sizes of the EPS beads are 1~3 mm, the EPS contents are 1%, 2%, 3%, and 4%, and the slag-cement composite binding agents are 10%, 15%, 20% and 25%. The results show that the UCS decreases significantly with increasing EPS bead content at different EPS bead contents and slag contents; the UCS of the specimen with 30% slag content is the largest; and the UCS of lightweight soil without slag is comparable to that of lightweight soil with a slag content of approximately 60%. The peak stress in triaxial increases with increasing confining pressure, and the modulus of deformation decreases linearly with increasing EPS bead content. the slag-cement composite binding agent has a significantly better reinforcing effect than single mixed cement. The stress‒strain curves of EPS lightweight soil mixed with slag exhibits hardening and softening characteristics. EPS bead content and slag content determine the stress‒strain characteristics of the EPS lightweight soil mixed with slag. The macromechanical properties based on the microscopic mechanism of the EPS lightweight soil mixed with slag shows that different slag contents affect the failure pattern of EPS lightweight soil mixed with slag. The research results can provide a reference for engineering design and application.


Asunto(s)
Cementos para Huesos , Poliestirenos , Fuerza Compresiva , Ingeniería , Cementos de Ionómero Vítreo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...